If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+40x+56=0
a = 5; b = 40; c = +56;
Δ = b2-4ac
Δ = 402-4·5·56
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-4\sqrt{30}}{2*5}=\frac{-40-4\sqrt{30}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+4\sqrt{30}}{2*5}=\frac{-40+4\sqrt{30}}{10} $
| 90x-5=5 | | 10x+5=25=x | | 2(x+2+x-8)=180 | | 3+3.6x^-1+0.6x^-2=0 | | -15z+21+5z=-19 | | 5p2=5 | | 7-(5p-13)=-25 | | 2x^2-27x-27=0 | | 9(x+1)=3(5x+1)-12 | | 6(2x+4)-24=12x | | 120-7x=150-9x | | 92+16x=104+13x | | 180-20x=140-16x | | -2(v-4)=4v+32 | | -2y-46=-5(y+5) | | 7(w+7)=-4w-39 | | -v+187=87 | | -w+46=282 | | 192=142-v | | 065=0.5c | | 3/5p=1 | | 13-9x-5x(2)=0 | | 7a+2=4a+7 | | 3(a-5)-a(a-2)=0 | | 14(5/7y+3/2)-8(7/4y-13/8)=11/2 | | 11k+13-(8k-5)+3k=0 | | 2x=x+139 | | 5(y-3)=4y-11 | | 15-2n=10 | | 2x+40+64+4x=180 | | (4x+8)(2x+8)=0 | | 20+3x-4=2x+8-3x |